Predictive Modeling and Planning of Robot Trajectories Using the Self-Organizing Map
نویسندگان
چکیده
In this paper, we propose an unsupervised neural network for prediction and planning of complex robot trajectories. A general approach is developed which allows Kohonen's Self-Organizing Map (SOM) to approximate nonlinear input-output dynamical mappings for trajectory reproduction purposes. Tests are performed on a real PUMA 560 robot aiming to assess the computational characteristics of the method as well as its robustness to noise and parametric changes. The results show that the current approach outperforms previous attempts to predictive modeling of robot trajectories through unsupervised neural networks.
منابع مشابه
Classification of Streaming Fuzzy DEA Using Self-Organizing Map
The classification of fuzzy data is considered as the most challenging areas of data analysis and the complexity of the procedures has been obstacle to the development of new methods for fuzzy data analysis. However, there are significant advances in modeling systems in which fuzzy data are available in the field of mathematical programming. In order to exploit the results of the researches on ...
متن کاملUncertainty Modeling of a Group Tourism Recommendation System Based on Pearson Similarity Criteria, Bayesian Network and Self-Organizing Map Clustering Algorithm
Group tourism is one of the most important tasks in tourist recommender systems. These systems, despite of the potential contradictions among the group's tastes, seek to provide joint suggestions to all members of the group, and propose recommendations that would allow the satisfaction of a group of users rather than individual user satisfaction. Another issue that has received less attention i...
متن کاملNGTSOM: A Novel Data Clustering Algorithm Based on Game Theoretic and Self- Organizing Map
Identifying clusters is an important aspect of data analysis. This paper proposes a noveldata clustering algorithm to increase the clustering accuracy. A novel game theoretic self-organizingmap (NGTSOM ) and neural gas (NG) are used in combination with Competitive Hebbian Learning(CHL) to improve the quality of the map and provide a better vector quantization (VQ) for clusteringdata. Different ...
متن کاملRobot Map Building by Kohonen’s Self-Organizing Neural Networks
A fundamental issue in mobile robotics is map building. The term refers to cases where a robot is forced to move in an unknown environment and has to build a map entirely based on its sensory information. In this paper we present a method for building robot maps by using a Kohonen’s self-organizing artificial neural network, and describe how path planning can be subsequently performed on such a...
متن کاملOptimal Trajectory Planning of a Box Transporter Mobile Robot
This paper aims to discuss the requirements of safe and smooth trajectory planning of transporter mobile robots to perform non-prehensile object manipulation task. In non-prehensile approach, the robot and the object must keep their grasp-less contact during manipulation task. To this end, dynamic grasp concept is employed for a box manipulation task and corresponding conditions are obtained an...
متن کامل